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Abstract: Hyper spectral  Imaging  produces  an  image  where  each  pixel  is  having  narrow  spectral  bands  with  

plentiful  spectral information. Spectral bands refer to the large number of measured wavelengths bands of 

Electromagnetic Spectrum. The large number of spectral bands in hyper spectral data increases the computational 

burden. So, dimensionality reduction through spectral feature selection thoroughly affects the accuracy of the 

classification. The applications of hyper spectral images require to process given data and achieve two fundamental 

goals: 1) detect and classify the constituent materials for each pixel in the scene; 2) reduce the data volume 

(dimensionality), without loss of useful information, so that it can be processed efficiently by a human. We used the 

technique of DRR (Dimensionality Reduction via Regression) an unsupervised method for dimensionality reduction. 
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I. INTRODUCTION 

 

Hyper spectral Imaging is an important research area in Remote Sensing. It uses the potentiality of digital imaging and 

spectroscopy. Hyper spectral imaging collects information across the Electromagnetic Spectrum. This technology is 

used mostly in the Minerals, Coal, Oil, Gas Industry and remote sensing applications. Hyper spectral images provide a 

picture of the surface of an area so some useful conclusion can be drawn from the given hyper spectral picture. Humans 

can see only visible band of the light spectrum, but others bands of non-visible light spectrum with higher and lower 

frequencies exist to the left and right of visible spectrum which also provides the useful information. This spectrum is 

known as the Electromagnetic Spectrum and it is classified into the bands of ultra-violet, x-rays, radio waves, micro 
waves and infra-red radiations.  These invisible bands are used in hyper spectral Imaging, and visible image is formed 

from these bands.  

 

Earth’s surface is covered with a variety of materials like soil, rocks, foliage and water, all composed of different 

minerals and chemical compounds. These materials all reflect only a small amount of the Electromagnetic Spectrum 

and using unique Electromagnetic Signatures these materials can be identified/ classified. Thus, every pixel in the 

hyper spectral image consists of a contiguous reflectance spectrum. Each pixel contains information (contiguous bands 

of electromagnetic spectrum from visible to infrared regions) can be used to identify/ classify the objects in the picture 

since it provides much more detailed information about the scene than the normal colour camera. Hyper spectral 

imaging can provide more detailed information from the picture of surveyed area compared to any other imaging 

technology. So the hyper spectral imaging provides an extremely enhanced ability to identify/ classify the objects in the 

picture based on their spectral properties. But, the classification of hyper spectral image is a very challenging task due 
to the huge number of band values for each pixel and hence more dimensionality. So dimensionality reduction becomes 

a crucial step for successfully implementing hyper spectral image classification. 

 

II. DIMENSIONALITY REDUCTION IN HYPER SPECTRAL IMAGE  

 

Hyper spectral image has very strong spectral correlation between two different bands and there is often a significant 

amount of redundant and  misleading  information  present  in  the image and  such  information  needs  to be removed  

before any further processing can be carried out [1],[2],[3], and [4].so it is useful to reduce the data dimensionality. 

  

A. Principal component analysis (PCA)   

This is a popular tool for linear dimensionality reduction and feature extraction. PCA is a statistical procedure that uses 
an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of 

linearly uncorrelated variables called principal components. The number of principal components is less than or equal 

to the number of original variables. This transformation is defined in such a way that the first principal component has 

the largest possible variance (that is, accounts for as much of the variability in the data as possible), and each 

succeeding component in turn has the highest variance possible under the constraint that it is orthogonal to the 

https://en.wikipedia.org/wiki/Orthogonal
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preceding components. The resulting vectors are an uncorrelated orthogonal basis set. The principal components are 

orthogonal because they are the eigenvectors of the covariance matrix, which is symmetric. PCA seeks to find a linear 
transformation which projects the data from a high-dimensional space to a lower dimensional subspace by maximizing 

the variance of the data in the projected subspace. The optimal number of projection is determined by the eigenvectors 

corresponding to the largest eigen values of the covariance matrix of the original data. PCA constitutes unsupervised 

dimensionality reduction and is commonly employed by researchers for classification. However, PCA provides, at best, 

suboptimal dimensionality reduction for classification tasks i.e., it is well understood that PCA can potentially discard 

information useful to the classification task at hand, particularly if such information is contained along the low-energy 

directions [5,6]. PCA is sensitive to the relative scaling of the original variables 

 

Steps to calculate PCA 

Given a set x1, x2, x3 ...xn in Rn space 

i) Take the whole dataset ignoring the class labels 

ii) Computing the d-dimensional mean vector 
iii) Computing the Scatter Matrix: The scatter matrix is computed by the following equation: 

𝐒 =  (Xk − m)(Xk − m)𝐓
𝐧

𝐤=𝟏

 

 where m is the mean vector 

m =
𝟏

𝐧
 𝐗𝐤

𝐧

𝐤=𝟏

 

 

iv) Computing the Covariance Matrix 

v)  Computing eigenvectors and corresponding eigenvalues 

vi) Sorting the eigenvectors by decreasing eigenvalues 

vii) Choosing k eigenvectors with the largest eigenvalues 

 

B. Locality Preserving Projections(LPP) 
It builds a graph incorporating neighbourhood information of the data set. Using the notion of the Laplacian of the 

graph, we then compute a transformation matrix which maps the data points to a subspace. This linear transformation 

optimally preserves local neighbourhood information in a certain sense. The representation map generated by the 

algorithm may be viewed as a linear discrete approximation to a continuous map that naturally arises from the 

geometry of the manifold [7]. The new algorithmic interesting from a number of perspectives 

 

Given a set x1,x2,x3,......xm in Rn space, find a transformation matrix A that maps these m points to a set of points 

y1,y2,y3....ym in Rl space where (l<<n), such that yi represents xi where yi=ATxi 

 

Steps to calculate LPP 

i) Constructing the adjacency graph: Let G denote a graph with m nodes. We put an edge between nodes i and j if xi 

and xj are”close”.  
 

ii) Choosing the weights: Here, as well, we have two variations for weighting the edges. W is a sparse symmetric m×m 

matrix with Wij having the weight of the edge joining vertices i and j, and 0 if there is no such edge. 

 

iii) Eigenmaps: Compute the eigenvectors and eigenvalues for the generalized eigen-vector problem 

XLX Ta=λXDXTa 

 

Where D is a diagonal matrix whose entries are column (or row, since W is symmetric) sums of W 

 

Let the column vectors a0,..............,al-1 be the solution ordered according to their eigen values λ0 < . . λl−1 
 

Thus embedding is as follows 

xi → yi = ATxiA 
 

C. Multidimensional scaling (MDS)  

This is a means of visualizing the level of similarity of individual cases of a dataset. It refers to a set of related 

ordination techniques used in information visualization, in particular to display the information contained in a distance 

https://en.wikipedia.org/wiki/Eigenvector
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matrix. An MDS algorithm aims to place each object in N-dimensional space such that the between-object distances are 

preserved as well as possible. Each object is then assigned coordinates in each of the N dimensions. The number of 
dimensions of an MDS plot N can exceed 2 and is specified a priori. Choosing N=2 optimizes the object locations for a 

two-dimensional scatter plot. 

 

Steps in MDS 

i) The classical MDS algorithm rests on the fact that the coordinate matrix X can be derived by eigenvalue 

decomposition from the scalar product matrix B-XX’. The problem of constructing B from the proximity matrix P is 

solved by multiplying the squared proximities with the matrix J-I-n-1This procedure is called double cantering. The 

following steps summarize the algorithm 

i) Setup the matrix of squared proximities P (2)-[p2] 

ii) Apply the double cantering B -1/2JP (2) J using the matrix J-I-n-1ll’ where n is the number of objects 

iii) Extract the m largest positive eigenvalues λ1 … . λm  of B and corresponding m eigenvectors e1....em. 

iv) A m-dimensional spatial configuration of the n object is derived from the coordinate matrix X − Em Λm
1/2

 , where Em 

is the matrix of m eigenvectors and Λm  is the diagonal matrix of m eigenvalues of B respectively. 

 

D. Kernel  PCA  

is the  nonlinear  form of PCA,  which  better exploits  the  complicated  spatial  structure of high-dimensional features. 

I) suppose that instead of using the points we would first map them to some nonlinear feature spaceϕ(xi), Apply the 

Gaussian Kernel 
ii) Extract principal component in that space (PCA) 

iii) The result will be non-linear in the original data space 

 

E. Dimensionality Reduction via Regression (DRR) 

The DRR presented here tries to nonlinearly remove the information still shared by different PCA components. T is 

well known that, even though PCA leads to a domain with decor related dimensions, complete independence (or non 

redundant coefficients) is guaranteed only if the signal has a Gaussian probability density function (PDF). Here, a 

scheme to remove this redundancy (or uninformative data) is presented. The idea is simple: just predict the redundant 

information in each coefficient that can be extracted from the others. Only the non-predictable information (the residual 

prediction error) should be retained for data representation. Specifically, we start from the linear PCA representation 

outlined above: α = Vx. Then, we propose to predict each coefficient, αi , through a multivariate regression function, 

fi(. ) , that takes the higher variance components as inputs for prediction. The non-predictable information is: 

 

yi = αi − αi = αi − fi(α1 , α2 , . . . αi−1 

 

And this residual, yi is the i-th dimension of the DRR domain. This prediction + subtraction is applied d-1 times ∀i=d, 

d-1, 2 where d is the dimension of the input. As a result, the DRR, representation of each input vector x is 

 

r = R(x) = (α1 , y2 , y3 , . yd )T  
 

III.  EXPERIMENTATION  
 

In this section, we give experimental evidence of the performance of the proposed algorithm along with four other 

algorithms. The challenging high dimensional data multispectral image Classification in which contextual information 

is stacked to the spectral information highly increases the dimensionality. The dataset used is Salinas Cube hypersectral 

data which is 512 X 217 pictures with 204 bands. The ground truth is given for the given dataset which is as shown 

below in figure1. Sixteen classes are identified in the image. A total of 54129 labelled samples are available. The 

classification accuracy is tested on Salinas’s dataset, and the experimentation results are as shown below. 

 

Dimensionality Accuracy_PCA Accuracy_LPP Accuracy_MDS Accuracy_KPCA Accuracy_ DRR 

100 86.1165 79.4602 85.5881 39.0382 78.5032 

50 86.2495 84.1730 86.2495 50.0532 82.2115 

30 86.3733 84.8787 86.3733 51.8248 87.1207 

20 86.7816 84.1804 86.3733 51.0957 85.0912 

10 90.8293 93.1275 90.8293 60.5165 87.1704 

5 94.8697 94.3136 94.8697 89.4973 87.1289 
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Fig.1. Ground truth of Salinas’s data 

 

IV. CONCLUSION 

 

This paper provides a various dimensionality reduction techniques in terms of feature extraction and classification 

accuracy for hyper spectral images. Commonly used feature extraction methods used such as principal component 

analysis(PCA), Locality Preserving Projections(LPP), Multidimensional scaling (MDS), Kernel  PCA, Dimensionality 

Reduction via Regression (DRR) have been discussed for hyper spectral images. A new technique for dimensionality 

reduction has been implemented based on Dimensionality Reduction via Regression (DRR), with good accuracy.   
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